skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wu, Chih-Hung"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A<sc>bstract</sc> In AdS/CFT, observables on the boundary are invariant under renormalization group (RG) flow in the bulk. In this paper, we study holographic entanglement entropy under bulk RG flow and find that it is indeed invariant. We focus on tree-level RG flow, where massive fields in a UV theory are integrated out to give the IR theory. We explicitly show that in several simple examples, holographic entanglement entropy calculated in the UV theory agrees with that calculated in the IR theory. Moreover, we give an argument for this agreement to hold for general tree-level RG flow. Along the way, we generalize the replica method of calculating holographic entanglement entropy to bulk theories that include matter fields with nonzero spin. 
    more » « less
  2. A bstract We prove the equivalence of two holographic computations of the butterfly velocity in higher-derivative theories with Lagrangian built from arbitrary contractions of curvature tensors. The butterfly velocity characterizes the speed at which local perturbations grow in chaotic many-body systems and can be extracted from the out-of-time-order correlator. This leads to a holographic computation in which the butterfly velocity is determined from a localized shockwave on the horizon of a dual black hole. A second holographic computation uses entanglement wedge reconstruction to define a notion of operator size and determines the butterfly velocity from certain extremal surfaces. By direct computation, we show that these two butterfly velocities match precisely in the aforementioned class of gravitational theories. We also present evidence showing that this equivalence holds in all gravitational theories. Along the way, we prove a number of general results on shockwave spacetimes. 
    more » « less
  3. null (Ed.)
    A bstract An alternative method is presented for extracting the von Neumann entropy − Tr( ρ ln ρ ) from Tr( ρ n ) for integer n in a quantum system with density matrix ρ . Instead of relying on direct analytic continuation in n , the method uses a generating function − Tr{ ρ ln[(1 − zρ )/(1 − z )]} of an auxiliary complex variable z . The generating function has a Taylor series that is absolutely convergent within |z| < 1, and may be analytically continued in z to z = −∞ where it gives the von Neumann entropy. As an example, we use the method to calculate analytically the CFT entanglement entropy of two intervals in the small cross ratio limit, reproducing a result that Calabrese et al. obtained by direct analytic continuation in n . Further examples are provided by numerical calculations of the entanglement entropy of two intervals for general cross ratios, and of one interval at finite temperature and finite interval length. 
    more » « less